
Second International Workshop for future
challenges in tracking and triggering concepts

What to expect
from the people

who want to
move forwards

Sverre Jarp

8 July 2011

How best to move
forward?

Sverre Jarp - Compilers 2

The complex story of computing
● In multiple layers:

Sverre Jarp - Compilers 3

Problem
Design, Algorithms, Data

Source program

System architecture
Instruction set architecture

µ-architecture
Circuits

Electrons

Compilers; Libraries

Adapted from Y.Patt, U-Austin

Take numerical accuracy (as an example)
● Affects most of the layers:
 Requiring 10-6 may be fine

•10-18 (i.e. bit for bit reproducibility, may be impossible)
 In the Exascale era:

•You may not even get the same numerical result from one
run to the next (on the same hardware)

Sverre Jarp - Compilers 4

Design, Algorithms, Data
Source program

System architecture
Instruction set architecture

µ-architecture

Compilers; Libraries

Seven dimensions of performance

● First three
dimensions:
 Pipelining
 Superscalar
 Computational width/SIMD

● Next dimension is a
“pseudo” dimension:
 Hardware multithreading

● Last three dimensions:
 Multiple cores
 Multiple sockets
 Multiple compute nodes

Sverre Jarp - Compilers 5

SIMD width

Superscalar

Pipelining

Multithreading

Nodes

Multicore

Sockets

Seven multiplicative dimensions

●First three
dimensions:
 Pipelining
 Superscalar
 Computational width/SIMD

● Next dimension is a
“pseudo” dimension:
 Hardware multithreading

● Last three dimensions:
 Multiple cores
 Multiple sockets
 Multiple compute nodes

● Need to understand
overall hardware
potential

● Where are we on the
scale ?
 10% ?
 90% ?

● Have we made the
same effort on the
CPU and the GPU?

Sverre Jarp - Compilers 6

When the HW potential is fully known

● Example from matrix multiply:
 “Optimizing matrix multiplication for a short-

vector SIMD architecture – CELL processor”
•J.Kurzak, W.Alvaro, J.Dongarra
•Parallel Computing 35 (2009) 138–150

Sverre Jarp - Compilers 7

In this paper, single-precision matrix multiplication kernels
are presented implementing the C = C – A x BT operation
and the C = C – A x B operation for matrices of size 64x64
elements. For the latter case, the performance of 25.55
Gflop/s is reported, or 99.80% of the peak, using as little as
5.9 kB of storage for code and auxiliary data structures.

Vector computing

Sverre Jarp - Compilers 8

Every computer is now a vector computer

● DP [SP] SIMD sizes:
 2x [4x] last ten years  4x [8x] now (2011)
 8x [16x] in MIC architecture

•This is too much performance to leave on the table
•Even if we do not achieve (anywhere near) 100% of peak

● HEP and vectors: Too little common ground
 Practically all attempts in the past failed.

•w/CRAY, CYBER 205, IBM 3090-Vector Facility, etc.
• Interesting reading: Dekeyser J 1987 “Vectorization of the

GEANT3 geometrical routines for a Cyber 205”

● But we need to try once more!
 25 years later!

Sverre Jarp - Compilers 9

SoA versus AoS

● In general, compilers
and hardware prefer
the former!

● Structure of Arrays
(SoA):

● Array of Structures
(AoS):

Sverre Jarp - Compilers

10

Z1 Z2 Z3 Z4 Z5 Z6

Y1 Y2 Y3 Y4 Y5 Y6

X1 X2 X3 X4 X5 X6

SP1
X,Y, Z

SP2
X,Y, Z

SP3
X,Y, Z

SP4
X,Y, Z

SP5
X,Y, Z

SP6
X,Y, Z

Spacepoints

Which compilers to
adapt?

Sverre Jarp - Compilers 11

Compilers on the market (1)
● Linux/open source:

 GNU compiler suite. Fortan and C/C++ [4.6.1]
– http://gcc.gnu.org/

 LLVM (C/C++) compiler framework [2.9]
•Originated from U. of Illinois
•Now supported by Apple

– http://www.llvm.org/

 Open64 compiler suite. C/C++/Fortran [4.2.4]
•Derived from the SGI MIPS, IA-64 compiler

– http://www.open64.net/
•Now also supported by AMD [4.2.5]

– http://www.amd.com/open64

Sverre Jarp - Compilers 12

Compilers on the market (2)

● Commercial/Linux or Windows:
 Intel compiler suite (C/C++/Fortran for IA-32, Intel64, and

IA-64); http://www.intel.com/ [12.0, 12.1 in beta]

 ST Microelectronics/Portland Group (PGI) (C/C++/Fortran
compilers; http://www.pgroup.com/ [11.5]

 Pathscale compilers (Now owned by NetSyncro.com). Also
derived from SGI’s compilers. (C/C++/Fortran);
http://www.pathscale.com/

 Microsoft C/C++ compiler; http://www.microsoft.com/

 Lahey/Fujitsu Fortran compiler; http://www.lahey.com/

 NAG Fortran Compiler; http://www.nag.com/
Sverre Jarp - Compilers 13

List of optimisation flags
● Common Linux compilers:

Sverre Jarp - Compilers 14

PGI Intel GNU Open64

Global optimisations -O2 -O2 -O2 -O2

Aggressive opt. -O3 -O3 -O3 -O3

Maximise performance -fast -fast -Ofast -Ofast

Interprocedural
optimisation

-Mipa=fast -ipo -flto -ipa

Profile-guided
optimisation

-Mpfi
-Mpfo

-prof-gen
-prof-use

-fprofile-
generate
-fprofile-
use

-fb-create
-fb-opt

Unrolling -Munroll -unroll
-unroll[N]
-unroll-
aggressive

-unroll-
loops
-unroll-
all-loops

WOPT:unroll
=N

Adapted from AMD brochure

List of vectorisation/parallelisation flags

● Common Linux compilers:

Sverre Jarp - Compilers 15

PGI Intel GNU Open64

Intrinsics Yes Yes Yes Yes

Autovectorisation -
Mvect[=sse]

-simd
-vec
(default)

-ftree-
vectorize

LNO:simd=
N

Report on
autovectorisation

??? -vec-
report[N]

-ftree-
vectorizer-
verbose=[N]

LNO:simd_
verbose

Vector Math Library -lacml -lsvml mveclibabi=
acml/svml

-lacml

OpenMP -mp -openmp -fopenmp -mp
-openmp

Autoparallelisation -Mconcur -parallel -apo

Adapted from AMD brochure

List of flags (for accuracy control)

● Common Linux compilers:

Sverre Jarp - Compilers 16

PGI Intel GNU Open64

Accuracy control -Kieee -fp-model -ieee-fp -fp-
accuracy

Fast transcendentals -fast-
transcend
entals

Relaxed FP control -Mfprelaxed -ffast-math

Adapted from AMD brochure

ACML versus SVML (Vector routines)

● Similar, but not identical
 Note that div and sqrt are native instructions

Sverre Jarp - Compilers 17

ACML (SSE only) SVML (also AVX)

Group 1 invsqrt
cbrt, invcbrt

Group 2 log, log10, log2
exp
pow (SP only)

log, log10, log2
exp, exp2
pow

Group 3 sin, cos, sincos sin, cos, sincos,
tan
asin, acos, atan,
atan2

Group 4 sinh, cosh, tanh

The big issue with compilers

● Which one(s) to choose
 Intel is clearly storming ahead with advanced

support for vector/parallel hardware

 As shown, the others also have support, but not at
the same level:
•CilkPlus/Advanced Vector Syntax, SIMD pragmas,

Advanced vector math library, etc.

● Our dilemma:
 Choose the lowest common denominator?
 Adopt new compiler features as quickly as

possible?

Sverre Jarp - Compilers 18

Questions at the end

● How to improve (in our community):
 Control of numerical results

•Whether we are using vector/parallel hardware, CPUs/GPUs,
53/64-bit mantissa, different compilers/libraries, etc.

 Exploitation of the vector capabilities in hardware
•“Every computer is a vector computer”

 Use of array syntax / Structures of Arrays
 Continued good use of parallelism with memory

under control
• It is rather incomprehensible that we need 1-10 GB of

memory to computer an event that is 1 MB in size
 A related question:

•How to move all the good prototypes back into mainstream
source?

Sverre Jarp - Compilers 19

BACKUP

Sverre Jarp - Compilers 20

Q & A

	Second International Workshop for future challenges in tracking and triggering concepts
	How best to move forward?
	The complex story of computing
	Take numerical accuracy (as an example)
	Seven dimensions of performance
	Seven multiplicative dimensions
	When the HW potential is fully known
	Vector computing
	Every computer is now a vector computer
	SoA versus AoS
	Which compilers to adapt?
	Compilers on the market (1)
	Compilers on the market (2)
	List of optimisation flags
	List of vectorisation/parallelisation flags
	List of flags (for accuracy control)
	ACML versus SVML (Vector routines)
	The big issue with compilers
	Questions at the end
	BACKUP
	Slide Number 21

