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The complex story of computing
● In multiple layers:
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Take numerical accuracy (as an example)
● Affects most of the layers:
 Requiring 10-6 may be fine

•10-18 (i.e. bit for bit reproducibility, may be impossible)
 In the Exascale era:

•You may not even get the same numerical result from one 
run to the next (on the same hardware)
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Seven dimensions of performance

● First three 
dimensions:
 Pipelining
 Superscalar
 Computational width/SIMD

● Next dimension is a 
“pseudo” dimension:
 Hardware multithreading

● Last three dimensions:
 Multiple cores
 Multiple sockets
 Multiple compute nodes 
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Seven multiplicative dimensions

●First three 
dimensions:
 Pipelining
 Superscalar
 Computational width/SIMD

● Next dimension is a 
“pseudo” dimension:
 Hardware multithreading

● Last three dimensions:
 Multiple cores
 Multiple sockets
 Multiple compute nodes 

● Need to understand 
overall hardware  
potential

● Where are we on the 
scale ?
 10% ?
 90%  ?

● Have we made the 
same effort on the 
CPU and the GPU?
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When the HW potential is fully known

● Example from matrix multiply:
 “Optimizing matrix multiplication for a short-

vector SIMD architecture – CELL processor”
•J.Kurzak, W.Alvaro, J.Dongarra
•Parallel Computing 35 (2009) 138–150
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In this paper, single-precision matrix multiplication kernels 
are presented implementing the C = C – A x BT operation 
and the C = C – A x B operation for matrices of size 64x64 
elements. For the latter case, the performance of 25.55 
Gflop/s is reported, or 99.80% of the peak, using as little as 
5.9 kB of storage for code and auxiliary data structures.



Vector computing
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Every computer is now a vector computer

● DP [SP] SIMD sizes:
 2x [4x] last ten years  4x [8x] now (2011)
 8x [16x] in MIC architecture

•This is too much performance to leave on the table
•Even if we do not achieve (anywhere near) 100% of peak

● HEP and vectors: Too little common ground
 Practically all attempts in the past failed.

•w/CRAY, CYBER 205, IBM 3090-Vector Facility, etc.
• Interesting reading: Dekeyser J 1987 “Vectorization of the 

GEANT3 geometrical routines for a Cyber 205”

● But we need to try once more!
 25 years later!
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SoA versus AoS

● In general, compilers 
and hardware prefer 
the former!

● Structure of Arrays 
(SoA):

● Array of Structures 
(AoS):
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Which compilers to 
adapt?
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Compilers on the market (1)
● Linux/open source:

 GNU compiler suite. Fortan and C/C++ [4.6.1]
– http://gcc.gnu.org/

 LLVM (C/C++) compiler framework [2.9]
•Originated from U. of Illinois
•Now supported by Apple

– http://www.llvm.org/

 Open64 compiler suite. C/C++/Fortran [4.2.4]
•Derived from the SGI MIPS, IA-64 compiler

– http://www.open64.net/
•Now also supported by AMD [4.2.5]

– http://www.amd.com/open64
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Compilers on the market (2)

● Commercial/Linux or Windows:
 Intel compiler suite (C/C++/Fortran for IA-32, Intel64, and 

IA-64); http://www.intel.com/ [12.0, 12.1 in beta]

 ST Microelectronics/Portland Group (PGI) (C/C++/Fortran 
compilers; http://www.pgroup.com/ [11.5]

 Pathscale compilers (Now owned by NetSyncro.com). Also 
derived from SGI’s compilers. (C/C++/Fortran); 
http://www.pathscale.com/

 Microsoft C/C++ compiler; http://www.microsoft.com/

 Lahey/Fujitsu Fortran compiler; http://www.lahey.com/

 NAG Fortran Compiler; http://www.nag.com/
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List of optimisation flags
● Common Linux compilers:
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PGI Intel GNU Open64

Global optimisations -O2 -O2 -O2 -O2

Aggressive opt. -O3 -O3 -O3 -O3

Maximise performance -fast -fast -Ofast -Ofast

Interprocedural
optimisation

-Mipa=fast -ipo -flto -ipa

Profile-guided 
optimisation

-Mpfi
-Mpfo

-prof-gen
-prof-use

-fprofile-
generate
-fprofile-
use

-fb-create
-fb-opt

Unrolling -Munroll -unroll
-unroll[N]
-unroll-
aggressive

-unroll-
loops
-unroll-
all-loops

WOPT:unroll
=N

Adapted from AMD brochure



List of vectorisation/parallelisation flags

● Common Linux compilers:
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PGI Intel GNU Open64

Intrinsics Yes Yes Yes Yes

Autovectorisation -
Mvect[=sse]

-simd
-vec
(default)

-ftree-
vectorize

LNO:simd=
N

Report on 
autovectorisation

??? -vec-
report[N]

-ftree-
vectorizer-
verbose=[N]

LNO:simd_
verbose

Vector Math Library -lacml -lsvml mveclibabi=
acml/svml

-lacml

OpenMP -mp -openmp -fopenmp -mp
-openmp

Autoparallelisation -Mconcur -parallel -apo

Adapted from AMD brochure



List of flags (for accuracy control)

● Common Linux compilers:
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PGI Intel GNU Open64

Accuracy control -Kieee -fp-model -ieee-fp -fp-
accuracy

Fast transcendentals -fast-
transcend
entals

Relaxed FP control -Mfprelaxed -ffast-math

Adapted from AMD brochure



ACML versus SVML (Vector routines)

● Similar, but not identical
 Note that div and sqrt are native instructions
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ACML (SSE only) SVML (also AVX)

Group 1 invsqrt
cbrt, invcbrt

Group 2 log, log10, log2
exp
pow (SP only)

log, log10, log2
exp, exp2
pow

Group 3 sin, cos, sincos sin, cos, sincos, 
tan
asin, acos, atan, 
atan2

Group 4 sinh, cosh, tanh



The big issue with compilers

● Which one(s) to choose
 Intel is clearly storming ahead with advanced 

support for vector/parallel hardware

 As shown, the others also have support, but not at 
the same level:
•CilkPlus/Advanced Vector Syntax, SIMD pragmas, 

Advanced vector math library, etc.

● Our dilemma:
 Choose the lowest common denominator?
 Adopt new compiler features as quickly as 

possible?
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Questions at the end

● How to improve (in our community):
 Control of numerical results

•Whether we are using vector/parallel hardware, CPUs/GPUs, 
53/64-bit mantissa, different compilers/libraries, etc.

 Exploitation of the vector capabilities in hardware
•“Every computer is a vector computer”

 Use of array syntax / Structures of Arrays
 Continued good use of parallelism with memory 

under control
• It is rather incomprehensible that we need 1-10 GB of 

memory to computer an event that is 1 MB in size
 A related question:

•How to move all the good prototypes back into  mainstream 
source?
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BACKUP
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Q & A
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